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ix

Thomas’ Calculus: Early Transcendentals, Thirteenth Edition, provides a modern intro-
duction to calculus that focuses on conceptual understanding in developing the essential 
elements of a traditional course. This material supports a three-semester or four-quarter 
calculus sequence typically taken by students in mathematics, engineering, and the natural 
sciences. Precise explanations, thoughtfully chosen examples, superior figures, and time-
tested exercise sets are the foundation of this text. We continue to improve this text in 
keeping with shifts in both the preparation and the ambitions of today’s students, and the 
applications of calculus to a changing world.

Many of today’s students have been exposed to the terminology and computational 
methods of calculus in high school. Despite this familiarity, their acquired algebra and 
trigonometry skills sometimes limit their ability to master calculus at the college level. In 
this text, we seek to balance students’ prior experience in calculus with the algebraic skill 
development they may still need, without slowing their progress through calculus itself. We 
have taken care to provide enough review material (in the text and appendices), detailed 
solutions, and variety of examples and exercises, to support a complete understanding of 
calculus for students at varying levels. We present the material in a way to encourage stu-
dent thinking, going beyond memorizing formulas and routine procedures, and we show 
students how to generalize key concepts once they are introduced. References are made 
throughout which tie a new concept to a related one that was studied earlier, or to a gen-
eralization they will see later on. After studying calculus from Thomas, students will have 
developed problem solving and reasoning abilities that will serve them well in many im-
portant aspects of their lives. Mastering this beautiful and creative subject, with its many 
practical applications across so many fields of endeavor, is its own reward. But the real gift 
of studying calculus is acquiring the ability to think logically and factually, and learning 
how to generalize conceptually. We intend this book to encourage and support those goals.

New to this Edition

In this new edition we further blend conceptual thinking with the overall logic and struc-
ture of single and multivariable calculus. We continue to improve clarity and precision, 
taking into account helpful suggestions from readers and users of our previous texts. While 
keeping a careful eye on length, we have created additional examples throughout the text. 
Numerous new exercises have been added at all levels of difficulty, but the focus in this 
revision has been on the mid-level exercises. A number of figures have been reworked and 
new ones added to improve visualization. We have written a new section on probability, 
which provides an important application of integration to the life sciences.

We have maintained the basic structure of the Table of Contents, and retained im-
provements from the twelfth edition. In keeping with this process, we have added more 
improvements throughout, which we detail here:

Preface
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x Preface

• Functions In discussing the use of software for graphing purposes, we added a brief 
subsection on least squares curve fitting, which allows students to take advantage of 
this widely used and available application. Prerequisite material continues to be re-
viewed in Appendices 1–3.

• Continuity We clarified the continuity definitions by confining the term “endpoints” to 
intervals instead of more general domains, and we moved the subsection on continuous 
extension of a function to the end of the continuity section.

• Derivatives We included a brief geometric insight justifying l’Hôpital’s Rule. We also 
enhanced and clarified the meaning of differentiability for functions of several vari-
ables, and added a result on the Chain Rule for functions defined along a path.

• Integrals We wrote a new section reviewing basic integration formulas and the Sub-
stitution Rule, using them in combination with algebraic and trigonometric identities, 
before presenting other techniques of integration.

• Probability We created a new section applying improper integrals to some commonly 
used probability distributions, including the exponential and normal distributions. 
Many examples and exercises apply to the life sciences.

• Series We now present the idea of absolute convergence before giving the Ratio and 
Root Tests, and then state these tests in their stronger form. Conditional convergence is 
introduced later on with the Alternating Series Test.

• Multivariable and Vector Calculus We give more geometric insight into the idea of 
multiple integrals, and we enhance the meaning of the Jacobian in using substitutions 
to evaluate them. The idea of surface integrals of vector fields now parallels the notion 
for line integrals of vector fields. We have improved our discussion of the divergence 
and curl of a vector field.

• Exercises and Examples Strong exercise sets are traditional with Thomas’ Calculus, 
and we continue to strengthen them with each new edition. Here, we have updated, 
changed, and added many new exercises and examples, with particular attention to in-
cluding more applications to the life science areas and to contemporary problems. For 
instance, we updated an exercise on the growth of the U.S. GNP and added new exer-
cises addressing drug concentrations and dosages, estimating the spill rate of a ruptured 
oil pipeline, and predicting rising costs for college tuition.

Continuing Features

RIGOR The level of rigor is consistent with that of earlier editions. We continue to distin-
guish between formal and informal discussions and to point out their differences. We think 
starting with a more intuitive, less formal, approach helps students understand a new or dif-
ficult concept so they can then appreciate its full mathematical precision and outcomes. We 
pay attention to defining ideas carefully and to proving theorems appropriate for calculus 
students, while mentioning deeper or subtler issues they would study in a more advanced 
course. Our organization and distinctions between informal and formal discussions give the 
instructor a degree of flexibility in the amount and depth of coverage of the various top-
ics. For example, while we do not prove the Intermediate Value Theorem or the Extreme 
Value Theorem for continuous functions on a # x # b, we do state these theorems precisely,  
illustrate their meanings in numerous examples, and use them to prove other important re-
sults. Furthermore, for those instructors who desire greater depth of coverage, in Appendix 
6 we discuss the reliance of the validity of these theorems on the completeness of the real 
numbers.
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 Preface xi

WRITING EXERCISES Writing exercises placed throughout the text ask students to ex-
plore and explain a variety of calculus concepts and applications. In addition, the end of 
each chapter contains a list of questions for students to review and summarize what they 
have learned. Many of these exercises make good writing assignments.

END-OF-CHAPTER REVIEWS AND PROJECTS In addition to problems appearing after 
each section, each chapter culminates with review questions, practice exercises covering 
the entire chapter, and a series of Additional and Advanced Exercises serving to include 
more challenging or synthesizing problems. Most chapters also include descriptions of 
several Technology Application Projects that can be worked by individual students or 
groups of students over a longer period of time. These projects require the use of a com-
puter running Mathematica or Maple and additional material that is available over the 
Internet at www.pearsonhighered.com/thomas and in MyMathLab.

WRITING AND APPLICATIONS As always, this text continues to be easy to read, conversa-
tional, and mathematically rich. Each new topic is motivated by clear, easy-to-understand 
examples and is then reinforced by its application to real-world problems of immediate 
interest to students. A hallmark of this book has been the application of calculus to science 
and engineering. These applied problems have been updated, improved, and extended con-
tinually over the last several editions.

TECHNOLOGY In a course using the text, technology can be incorporated according to 
the taste of the instructor. Each section contains exercises requiring the use of technology; 
these are marked with a T if suitable for calculator or computer use, or they are labeled 
Computer Explorations if a computer algebra system (CAS, such as Maple or Math-
ematica) is required.

Additional Resources

INSTRUCTOR’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-88408-6 | 978-0-321-88408-4 
Multivariable Calculus (Chapters 10–16), ISBN 0-321-87901-5 | 978-0-321-87901-1  
The Instructor’s Solutions Manual contains complete worked-out solutions to all of the 
exercises in Thomas’ Calculus: Early Transcendentals.

STUDENT’S SOLUTIONS MANUAL
Single Variable Calculus (Chapters 1–11), ISBN 0-321-88410-8 | 978-0-321-88410-7 
Multivariable Calculus (Chapters 10–16), ISBN 0-321-87897-3 | 978-0-321-87897-7 
The Student’s Solutions Manual is designed for the student and contains carefully 
worked-out solutions to all the odd-numbered exercises in Thomas’ Calculus: Early 
Transcendentals.

JUST-IN-TIME ALGEBRA AND TRIGONOMETRY FOR  
EARLY TRANSCENDENTALS CALCULUS, Fourth Edition
ISBN 0-321-67103-1 | 978-0-321-67103-5
Sharp algebra and trigonometry skills are critical to mastering calculus, and Just-in-Time 
Algebra and Trigonometry for Early Transcendentals Calculus by Guntram Mueller and 
Ronald I. Brent is designed to bolster these skills while students study calculus. As stu-
dents make their way through calculus, this text is with them every step of the way, show-
ing them the necessary algebra or trigonometry topics and pointing out potential problem 
spots. The easy-to-use table of contents has algebra and trigonometry topics arranged in 
the order in which students will need them as they study calculus.
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xii Preface

Technology Resource Manuals
Maple Manual by Marie Vanisko, Carroll College
Mathematica Manual by Marie Vanisko, Carroll College
TI-Graphing Calculator Manual by Elaine McDonald-Newman, Sonoma State University 
These manuals cover Maple 17, Mathematica 8, and the TI-83 Plus/TI-84 Plus and TI-89, 
respectively. Each manual provides detailed guidance for integrating a specific software 
package or graphing calculator throughout the course, including syntax and commands. 
These manuals are available to qualified instructors through the Thomas’ Calculus: Early 
Transcendentals Web site, www.pearsonhighered.com/thomas, and MyMathLab.

WEB SITE www.pearsonhighered.com/thomas
The Thomas’ Calculus: Early Transcendentals Web site contains the chapter on Second-
Order Differential Equations, including odd-numbered answers, and provides the ex-
panded historical biographies and essays referenced in the text. The Technology Resource 
Manuals and the Technology Application Projects, which can be used as projects by in-
dividual students or groups of students, are also available.

MyMathLab® Online Course (access code required)
MyMathLab from Pearson is the world’s leading online resource in mathematics, integrat-
ing interactive homework, assessment, and media in a flexible, easy-to-use format.

MyMathLab delivers proven results in helping individual students succeed.

• MyMathLab has a consistently positive impact on the quality of learning in higher  
education math instruction. MyMathLab can be successfully implemented in any  
environment—lab-based, hybrid, fully online, traditional—and demonstrates the quan-
tifiable difference that integrated usage makes in regard to student retention, subse-
quent success, and overall achievement.

• MyMathLab’s comprehensive online gradebook automatically tracks your students’ re-
sults on tests, quizzes, homework, and in the study plan. You can use the gradebook to 
quickly intervene if your students have trouble, or to provide positive feedback on a job 
well done. The data within MyMathLab are easily exported to a variety of spreadsheet 
programs, such as Microsoft Excel. You can determine which points of data you want 
to export, and then analyze the results to determine success.

MyMathLab provides engaging experiences that personalize, stimulate, and measure 
learning for each student.

• “Getting Ready” chapter includes hundreds of exercises that address prerequisite 
skills in algebra and trigonometry. Each student can receive remediation for just those 
skills he or she needs help with.

• Exercises: The homework and practice exercises in MyMathLab are correlated to the 
exercises in the textbook, and they regenerate algorithmically to give students unlim-
ited opportunity for practice and mastery. The software offers immediate, helpful feed-
back when students enter incorrect answers.

• Multimedia Learning Aids: Exercises include guided solutions, sample problems, 
animations, Java™ applets, videos, and eText access for extra help at point-of-use.

• Expert Tutoring: Although many students describe the whole of MyMathLab as “like 
having your own personal tutor,” students using MyMathLab do have access to live 
tutoring from Pearson, from qualified math and statistics instructors.
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And, MyMathLab comes from an experienced partner with educational expertise and an 
eye on the future.

• Knowing that you are using a Pearson product means knowing that you are using qual-
ity content. It means that our eTexts are accurate and our assessment tools work. It also 
means we are committed to making MyMathLab as accessible as possible.

• Whether you are just getting started with MyMathLab, or have a question along the 
way, we’re here to help you learn about our technologies and how to incorporate them 
into your course.

To learn more about how MyMathLab combines proven learning applications with power-
ful assessment, visit www.mymathlab.com or contact your Pearson representative.

Video Lectures with Optional Captioning
The Video Lectures with Optional Captioning feature an engaging team of mathemat-
ics instructors who present comprehensive coverage of topics in the text. The lecturers’ 
presentations include examples and exercises from the text and support an approach that 
emphasizes visualization and problem solving. Available only through MyMathLab and 
MathXL.

MathXL® Online Course (access code required)
MathXL® is the homework and assessment engine that runs MyMathLab. (MyMathLab is 
MathXL plus a learning management system.)

With MathXL, instructors can:

• Create, edit, and assign online homework and tests using algorithmically generated ex-
ercises correlated at the objective level to the textbook.

• Create and assign their own online exercises and import TestGen tests for added flexibility.

• Maintain records of all student work tracked in MathXL’s online gradebook.

With MathXL, students can:

• Take chapter tests in MathXL and receive personalized study plans and/or personalized 
homework assignments based on their test results.

• Use the study plan and/or the homework to link directly to tutorial exercises for the 
objectives they need to study.

• Access supplemental animations and video clips directly from selected exercises.

MathXL is available to qualified adopters. For more information, visit our website at 
www.mathxl.com, or contact your Pearson representative.

TestGen®

TestGen® (www.pearsoned.com/testgen) enables instructors to build, edit, print, and ad-
minister tests using a computerized bank of questions developed to cover all the objec-
tives of the text. TestGen is algorithmically based, allowing instructors to create multiple 
but equivalent versions of the same question or test with the click of a button. Instructors 
can also modify test bank questions or add new questions. The software and test bank are 
available for download from Pearson Education’s online catalog.

PowerPoint® Lecture Slides
These classroom presentation slides are geared specifically to the sequence and philosophy 
of the Thomas’ Calculus series. Key graphics from the book are included to help bring the 
concepts alive in the classroom.These files are available to qualified instructors through 
the Pearson Instructor Resource Center, www.pearsonhighered/irc, and MyMathLab.
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1

OVERVIEW Functions are fundamental to the study of calculus. In this chapter we review 
what functions are and how they are pictured as graphs, how they are combined and trans-
formed, and ways they can be classified. We review the trigonometric functions, and we 
discuss misrepresentations that can occur when using calculators and computers to obtain 
a function’s graph. We also discuss inverse, exponential, and logarithmic functions. The 
real number system, Cartesian coordinates, straight lines, circles, parabolas, and ellipses 
are reviewed in the Appendices.

Functions

1

 1.1 Functions and Their Graphs

Functions are a tool for describing the real world in mathematical terms. A function can be 
represented by an equation, a graph, a numerical table, or a verbal description; we will use 
all four representations throughout this book. This section reviews these function ideas.

Functions; Domain and Range

The temperature at which water boils depends on the elevation above sea level (the boiling 
point drops as you ascend). The interest paid on a cash investment depends on the length of 
time the investment is held. The area of a circle depends on the radius of the circle. The dis-
tance an object travels at constant speed along a straight-line path depends on the elapsed time.

In each case, the value of one variable quantity, say y, depends on the value of another 
variable quantity, which we might call x. We say that “y is a function of x” and write this 
symbolically as

y = ƒ(x)  (“y equals ƒ of x”).

In this notation, the symbol ƒ represents the function, the letter x is the independent variable 
representing the input value of ƒ, and y is the dependent variable or output value of ƒ at x.

DEFINITION A function ƒ from a set D to a set Y is a rule that assigns a unique 
(single) element ƒ(x)∊Y  to each element x∊D.

The set D of all possible input values is called the domain of the function. The set of 
all output values of ƒ(x) as x varies throughout D is called the range of the function. The 
range may not include every element in the set Y. The domain and range of a function can 
be any sets of objects, but often in calculus they are sets of real numbers interpreted as 
points of a coordinate line. (In Chapters 13–16, we will encounter functions for which the 
elements of the sets are points in the coordinate plane or in space.)
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2 Chapter 1: Functions

Often a function is given by a formula that describes how to calculate the output value 
from the input variable. For instance, the equation A = pr2 is a rule that calculates the 
area A of a circle from its radius r (so r, interpreted as a length, can only be positive in this 
formula). When we define a function y = ƒ(x) with a formula and the domain is not stated 
explicitly or restricted by context, the domain is assumed to be the largest set of real 
x-values for which the formula gives real y-values, which is called the natural domain. If 
we want to restrict the domain in some way, we must say so. The domain of y = x2 is the 
entire set of real numbers. To restrict the domain of the function to, say, positive values of 
x, we would write “y = x2, x 7 0.”

Changing the domain to which we apply a formula usually changes the range as well. 
The range of y = x2 is [0, q). The range of y = x2, x Ú 2, is the set of all numbers 
obtained by squaring numbers greater than or equal to 2. In set notation (see Appendix 1), 
the range is 5x2 � x Ú 26  or 5y � y Ú 46  or 34, q).

When the range of a function is a set of real numbers, the function is said to be real-
valued. The domains and ranges of most real-valued functions of a real variable we con-
sider are intervals or combinations of intervals. The intervals may be open, closed, or half 
open, and may be finite or infinite. Sometimes the range of a function is not easy to find.

A function ƒ is like a machine that produces an output value ƒ(x) in its range whenever we 
feed it an input value x from its domain (Figure 1.1). The function keys on a calculator give an 
example of a function as a machine. For instance, the 2x key on a calculator gives an output 
value (the square root) whenever you enter a nonnegative number x and press the 2x key.

A function can also be pictured as an arrow diagram (Figure 1.2). Each arrow associates 
an element of the domain D with a unique or single element in the set Y. In Figure 1.2, the 
arrows indicate that ƒ(a) is associated with a, ƒ(x) is associated with x, and so on. Notice that 
a function can have the same value at two different input elements in the domain (as occurs 
with ƒ(a) in Figure 1.2), but each input element x is assigned a single output value ƒ(x).

EXAMPLE 1  Let’s verify the natural domains and associated ranges of some simple 
functions. The domains in each case are the values of x for which the formula makes sense.

Input
(domain)

Output
(range)

x f (x)f

FIGURE 1.1 A diagram showing a  
function as a kind of machine.

x

a f (a) f (x)

D = domain set Y = set containing
the range

FIGURE 1.2 A function from a set D  
to a set Y assigns a unique element of Y  
to each element in D.

 Function Domain (x) Range ( y)

y = x2  (-q, q) 30, q)

y = 1>x (-q, 0) ∪ (0, q) (-q, 0) ∪ (0, q)

y = 2x 30, q) 30, q)

y = 24 - x (-q, 44  30, q)

y = 21 - x2 3-1, 14  30, 14

Solution The formula y = x2 gives a real y-value for any real number x, so the domain 
is (-q, q). The range of y = x2 is 30, q) because the square of any real number is non-
negative and every nonnegative number y is the square of its own square root, y = 12y22 
for y Ú 0.

The formula y = 1>x gives a real y-value for every x except x = 0. For consistency 
in the rules of arithmetic, we cannot divide any number by zero. The range of y = 1>x, the 
set of reciprocals of all nonzero real numbers, is the set of all nonzero real numbers, since 
y = 1>(1>y). That is, for y ≠ 0 the number x = 1>y is the input assigned to the output 
value y.

The formula y = 2x gives a real y-value only if x Ú 0. The range of y = 2x is 
30, q) because every nonnegative number is some number’s square root (namely, it is the 
square root of its own square).

In y = 24 - x , the quantity 4 - x cannot be negative. That is, 4 - x Ú 0, or 
x … 4. The formula gives real y-values for all x … 4. The range of 24 - x is 30, q), 
the set of all nonnegative numbers.
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 1.1  Functions and Their Graphs 3

The formula y = 21 - x2 gives a real y-value for every x in the closed interval from 
-1 to 1. Outside this domain, 1 - x2 is negative and its square root is not a real number. 
The values of 1 - x2 vary from 0 to 1 on the given domain, and the square roots of these 
values do the same. The range of 21 - x2 is 30, 14 . 

Graphs of Functions

If ƒ is a function with domain D, its graph consists of the points in the Cartesian plane 
whose coordinates are the input-output pairs for ƒ. In set notation, the graph is

5(x, ƒ(x)) �  x∊D6 .

The graph of the function ƒ(x) = x + 2 is the set of points with coordinates (x, y) for 
which y = x + 2. Its graph is the straight line sketched in Figure 1.3.

The graph of a function ƒ is a useful picture of its behavior. If (x, y) is a point on the 
graph, then y = ƒ(x) is the height of the graph above (or below) the point x. The height 
may be positive or negative, depending on the sign of ƒ(x) (Figure 1.4).

x

y

−2 0

2

y = x + 2

FIGURE 1.3 The graph of ƒ(x) = x + 2 
is the set of points (x, y) for which y has the 
value x + 2.

y

x
0 1 2

x

f (x)

(x, y)

f (1)

f (2)

FIGURE 1.4 If (x, y) lies on the graph of 
ƒ, then the value y = ƒ(x) is the height of 
the graph above the point x (or below x if 
ƒ(x) is negative).

0 1 2−1−2

1

2

3

4
(−2, 4)

(−1, 1) (1, 1)

(2, 4)

3
2

9
4

,

x

y

y = x2

a   b

FIGURE 1.5 Graph of the function  
in Example 2.

EXAMPLE 2  Graph the function y = x2 over the interval 3-2, 24 .

Solution Make a table of xy-pairs that satisfy the equation y = x2. Plot the points (x, y) 
whose coordinates appear in the table, and draw a smooth curve (labeled with its equation) 
through the plotted points (see Figure 1.5). 

How do we know that the graph of y = x2 doesn’t look like one of these curves?

 x y = x2

 -2 4

 -1 1

 0 0

 1 1

 
3
2

 
9
4

 2 4

y = x2?

x

y

y = x2?

x

y
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4 Chapter 1: Functions

To find out, we could plot more points. But how would we then connect them? The basic 
question still remains: How do we know for sure what the graph looks like between the 
points we plot? Calculus answers this question, as we will see in Chapter 4. Meanwhile, 
we will have to settle for plotting points and connecting them as best we can.

Representing a Function Numerically

We have seen how a function may be represented algebraically by a formula (the area 
function) and visually by a graph (Example 2). Another way to represent a function is 
numerically, through a table of values. Numerical representations are often used by engi-
neers and experimental scientists. From an appropriate table of values, a graph of the func-
tion can be obtained using the method illustrated in Example 2, possibly with the aid of a 
computer. The graph consisting of only the points in the table is called a scatterplot.

EXAMPLE 3  Musical notes are pressure waves in the air. The data associated with 
Figure 1.6 give recorded pressure displacement versus time in seconds of a musical note 
produced by a tuning fork. The table provides a representation of the pressure function 
over time. If we first make a scatterplot and then connect approximately the data points  
(t, p) from the table, we obtain the graph shown in the figure.

−0.6
−0.4
−0.2

0.2
0.4
0.6
0.8
1.0

t (sec)

p (pressure)

0.001 0.002 0.004 0.0060.003 0.005

Data

FIGURE 1.6 A smooth curve through the plotted points 
gives a graph of the pressure function represented by the  
accompanying tabled data (Example 3).

 Time Pressure Time Pressure

0.00091 -0.080 0.00362 0.217

0.00108 0.200 0.00379 0.480

0.00125 0.480 0.00398 0.681

0.00144 0.693 0.00416 0.810

0.00162 0.816 0.00435 0.827

0.00180 0.844 0.00453 0.749

0.00198 0.771 0.00471 0.581

0.00216 0.603 0.00489 0.346

0.00234 0.368 0.00507 0.077

0.00253 0.099 0.00525 -0.164

0.00271 -0.141 0.00543 -0.320

0.00289 -0.309 0.00562 -0.354

0.00307 -0.348 0.00579 -0.248

0.00325 -0.248 0.00598 -0.035
0.00344 -0.041    

 

The Vertical Line Test for a Function

Not every curve in the coordinate plane can be the graph of a function. A function ƒ can 
have only one value ƒ(x) for each x in its domain, so no vertical line can intersect the 
graph of a function more than once. If a is in the domain of the function ƒ, then the vertical 
line x = a will intersect the graph of ƒ at the single point (a, ƒ(a)).

A circle cannot be the graph of a function, since some vertical lines intersect the circle 
twice. The circle graphed in Figure 1.7a, however, does contain the graphs of functions of 
x, such as the upper semicircle defined by the function ƒ(x) = 21 - x2 and the lower 
semicircle defined by the function g (x) = - 21 - x2 (Figures 1.7b and 1.7c).
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 1.1  Functions and Their Graphs 5

Piecewise-Defined Functions

Sometimes a function is described in pieces by using different formulas on different parts 
of its domain. One example is the absolute value function

0 x 0 = e x, x Ú 0 

-x, x 6 0,
       

First formula

Second formula

whose graph is given in Figure 1.8. The right-hand side of the equation means that the 
function equals x if x Ú 0, and equals -x if x 6 0. Piecewise-defined functions often 
arise when real-world data are modeled. Here are some other examples.

EXAMPLE 4  The function

ƒ(x) = c -x, x 6 0

  x2, 0 … x … 1

  1, x 7 1

   
First formula

Second formula

Third formula

is defined on the entire real line but has values given by different formulas, depending on 
the position of x. The values of ƒ are given by y = -x when x 6 0, y = x2 when 
0 … x … 1, and y = 1 when x 7 1. The function, however, is just one function whose 
domain is the entire set of real numbers (Figure 1.9). 

EXAMPLE 5  The function whose value at any number x is the greatest integer less 
than or equal to x is called the greatest integer function or the integer floor function. It 
is denoted :x; . Figure 1.10 shows the graph. Observe that

 
:2.4; = 2, :1.9; = 1, :0; = 0, :-1.2; = -2,
:2; = 2, :0.2; = 0, :-0.3; = -1, :-2; = -2.

 

EXAMPLE 6  The function whose value at any number x is the smallest integer 
greater than or equal to x is called the least integer function or the integer ceiling func-
tion. It is denoted <x= . Figure 1.11 shows the graph. For positive values of x, this function 
might represent, for example, the cost of parking x hours in a parking lot that charges $1 
for each hour or part of an hour. 

−1 10
x

y

(a) x2 + y2 = 1

−1 10
x

y

−1 1

0
x

y

(b) y = "1 − x2 (c) y = −"1 − x2

FIGURE 1.7 (a) The circle is not the graph of a function; it fails the vertical line test. (b) The  
upper semicircle is the graph of a function ƒ(x) = 21 - x2. (c) The lower semicircle is the graph 
of a function g (x) = - 21 - x2.

−2 −1 0 1 2

1

2

x

y

y = −x

y = x2

y = 1

y = f (x)

FIGURE 1.9 To graph the 
function y = ƒ(x) shown here, 
we apply different formulas to 
different parts of its domain 
(Example 4).

x

y = 0 x 0

y = x
y = −x

y

−3 −2 −1 0 1 2 3

1

2

3

FIGURE 1.8 The absolute value 
function has domain (-q, q) and 
range 30, q).

1

−2

2

3

−2 −1 1 2 3

y = x

y = :x;

x

y

FIGURE 1.10 The graph of the 
greatest integer function y = :x;  
lies on or below the line y = x, so 
it provides an integer floor for x 
(Example 5).

M01_THOM4077_CH01_pp001-058.indd   5 6/12/13   5:44 PM



6 Chapter 1: Functions

Increasing and Decreasing Functions

If the graph of a function climbs or rises as you move from left to right, we say that the 
function is increasing. If the graph descends or falls as you move from left to right, the 
function is decreasing.

x

y

1−1−2 2 3

−2

−1

1

2

3
y = x

y = <x=

FIGURE 1.11 The graph 
of the least integer function 
y = <x=  lies on or above the line 
y = x, so it provides an integer 
ceiling for x (Example 6).

(a)

(b)

0
x

y

y = x2

(x, y)(−x, y)

0
x

y

y = x3

(x, y)

(−x, −y)

FIGURE 1.12 (a) The graph of y = x2 
(an even function) is symmetric about the 
y-axis. (b) The graph of y = x3 (an odd 
function) is symmetric about the origin.

DEFINITIONS Let ƒ be a function defined on an interval I and let x1 and x2 be 
any two points in I.

1. If ƒ(x2) 7 ƒ(x1) whenever x1 6 x2, then ƒ is said to be increasing on I.

2. If ƒ(x2) 6 ƒ(x1) whenever x1 6 x2, then ƒ is said to be decreasing on I.

It is important to realize that the definitions of increasing and decreasing functions 
must be satisfied for every pair of points x1 and x2 in I with x1 6 x2. Because we use the 
inequality 6 to compare the function values, instead of … , it is sometimes said that ƒ is 
strictly increasing or decreasing on I. The interval I may be finite (also called bounded) or 
infinite (unbounded) and by definition never consists of a single point (Appendix 1).

EXAMPLE 7  The function graphed in Figure 1.9 is decreasing on (-q, 04  and increas-
ing on 30, 14 . The function is neither increasing nor decreasing on the interval 31, q) 
because of the strict inequalities used to compare the function values in the definitions. 

Even Functions and Odd Functions: Symmetry

The graphs of even and odd functions have characteristic symmetry properties.

DEFINITIONS A function y = ƒ(x) is an

even function of x if ƒ(-x) = ƒ(x),

odd function of x if ƒ(-x) = -ƒ(x),

for every x in the function’s domain.

The names even and odd come from powers of x. If y is an even power of x, as in 
y = x2 or y = x4, it is an even function of x because (-x)2 = x2 and (-x)4 = x4. If y is an 
odd power of x, as in y = x or y = x3, it is an odd function of x because (-x)1 = -x and 
(-x)3 = -x3.

The graph of an even function is symmetric about the y-axis. Since ƒ(-x) = ƒ(x), a 
point (x, y) lies on the graph if and only if the point (-x, y) lies on the graph (Figure 1.12a). 
A reflection across the y-axis leaves the graph unchanged.

The graph of an odd function is symmetric about the origin. Since ƒ(-x) = -ƒ(x), a 
point (x, y) lies on the graph if and only if the point (-x, -y) lies on the graph (Figure 1.12b). 
Equivalently, a graph is symmetric about the origin if a rotation of 180° about the origin leaves the 
graph unchanged. Notice that the definitions imply that both x and -x must be in the domain of ƒ.

EXAMPLE 8  Here are several functions illustrating the definition.

ƒ(x) = x2  Even function: (-x)2 = x2 for all x; symmetry about y-axis.

ƒ(x) = x2 + 1   Even function: (-x)2 + 1 = x2 + 1 for all x; symmetry about 
y-axis (Figure 1.13a).

ƒ(x) = x  Odd function: (-x) = -x for all x; symmetry about the origin.

ƒ(x) = x + 1   Not odd: ƒ(-x) = -x + 1, but -ƒ(x) = -x - 1. The two are not 
equal.

 Not even: (-x) + 1 ≠ x + 1 for all x ≠ 0 (Figure 1.13b). 
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 1.1  Functions and Their Graphs 7

Common Functions

A variety of important types of functions are frequently encountered in calculus. We iden-
tify and briefly describe them here.

Linear Functions A function of the form ƒ(x) = mx + b, for constants m and b, is called 
a linear function. Figure 1.14a shows an array of lines ƒ(x) = mx where b = 0, so these 
lines pass through the origin. The function ƒ(x) = x where m = 1 and b = 0 is called the 
identity function. Constant functions result when the slope m = 0 (Figure 1.14b).  
A linear function with positive slope whose graph passes through the origin is called a  
proportionality relationship.

(a) (b)

x

y

0

1

y = x2 + 1

y = x2

x

y

0−1

1

y = x + 1

y = x

FIGURE 1.13 (a) When we add the constant term 1 to the function 
y = x2, the resulting function y = x2 + 1 is still even and its graph is 
still symmetric about the y-axis. (b) When we add the constant term 1 to 
the function y = x, the resulting function y = x + 1 is no longer odd, 
since the symmetry about the origin is lost. The function y = x + 1 is 
also not even (Example 8).

x

y

0 1 2

1

2 y = 3
2

(b)

FIGURE 1.14 (a) Lines through the origin with slope m. (b) A constant func-
tion with slope m = 0.

0 x

y
m = −3 m = 2

m = 1m = −1

y = −3x

y = −x

y = 2x

y = x

y = x
1
2

m = 1
2

(a)

If the variable y is proportional to the reciprocal 1>x, then sometimes it is said that y is 
inversely proportional to x (because 1>x is the multiplicative inverse of x).

Power Functions A function ƒ(x) = xa, where a is a constant, is called a power function. 
There are several important cases to consider.

DEFINITION Two variables y and x are proportional (to one another) if one 
is always a constant multiple of the other; that is, if y = kx for some nonzero  
constant k.
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8 Chapter 1: Functions

(a) a = n,  a positive integer.

The graphs of ƒ(x) = xn, for n = 1, 2, 3, 4, 5, are displayed in Figure 1.15. These func-
tions are defined for all real values of x. Notice that as the power n gets larger, the curves 
tend to flatten toward the x-axis on the interval (-1, 1), and to rise more steeply for 
0 x 0 7 1. Each curve passes through the point (1, 1) and through the origin. The graphs of 
functions with even powers are symmetric about the y-axis; those with odd powers are 
symmetric about the origin. The even-powered functions are decreasing on the interval 
(-q, 04  and increasing on 30, q); the odd-powered functions are increasing over the 
entire real line (-q, q).

−1 0 1

−1

1

x

y y = x2

−1 10

−1

1

x

y y = x

−1 10

−1

1

x

y y = x3

−1 0 1

−1

1

x

y y = x4

−1 0 1

−1

1

x

y y = x5

FIGURE 1.15 Graphs of ƒ(x) = xn, n = 1, 2, 3, 4, 5, defined for -q 6 x 6 q.

x

y

x

y

0

1

1

0

1

1

y = 1
x y = 1

x2

Domain: x ≠ 0
Range:   y ≠ 0

Domain: x ≠ 0
Range:   y > 0

(a) (b)

FIGURE 1.16 Graphs of the power functions ƒ(x) = xa for part (a) a = -1  
and for part (b) a = -2.

(b) a = -1  or  a = -2.

The graphs of the functions ƒ(x) = x-1 = 1>x and g(x) = x-2 = 1>x2 are shown in  
Figure 1.16. Both functions are defined for all x ≠ 0 (you can never divide by zero). The 
graph of y = 1>x is the hyperbola xy = 1, which approaches the coordinate axes far from 
the origin. The graph of y = 1>x2 also approaches the coordinate axes. The graph of the 
function ƒ is symmetric about the origin; ƒ is decreasing on the intervals (-q, 0) and 
(0, q). The graph of the function g is symmetric about the y-axis; g is increasing on 
(-q, 0) and decreasing on (0, q).

(c) a = 1
2

, 13, 
3
2

, and 23.

The functions ƒ(x) = x1>2 = 2x and g(x) = x1>3 = 23 x are the square root and cube 
root functions, respectively. The domain of the square root function is 30, q), but the 
cube root function is defined for all real x. Their graphs are displayed in Figure 1.17, along 
with the graphs of y = x3>2 and y = x2>3. (Recall that x3>2 = (x1>2)3 and x2>3 = (x1>3)2.)

Polynomials A function p is a polynomial if

p(x) = an xn + an - 1xn - 1 + g+  a1 x + a0

where n is a nonnegative integer and the numbers a0, a1, a2, c, an are real constants 
(called the coefficients of the polynomial). All polynomials have domain (-q, q). If the 
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y

x
0

1

1

y = x3�2

Domain:
Range:

0 ≤ x < ∞
0 ≤ y < ∞

y

x

Domain:
Range:

−∞ < x < ∞
0 ≤ y < ∞

0

1

1

y = x2�3

x

y

0 1

1

Domain:
Range:

0 ≤ x < ∞
0 ≤ y < ∞

y = !x

x

y

Domain:
Range:

−∞ < x < ∞
−∞ < y < ∞

1

1

0

3
y = !x

FIGURE 1.17 Graphs of the power functions ƒ(x) = xa for a = 1
2

, 
1
3

, 
3
2

, and 
2
3

.

leading coefficient an ≠ 0 and n 7 0, then n is called the degree of the polynomial. Lin-
ear functions with m ≠ 0 are polynomials of degree 1. Polynomials of degree 2, usually 
written as p(x) = ax2 + bx + c, are called quadratic functions. Likewise, cubic functions 
are polynomials p(x) = ax3 + bx2 + cx + d  of degree 3. Figure 1.18 shows the graphs 
of three polynomials. Techniques to graph polynomials are studied in Chapter 4.

x

y

0

y =  −     − 2x + x3

3
x2

2
1
3

(a)

y

x
−1 1 2

2

−2

−4

−6

−8

−10

−12

y = 8x4 − 14x3 − 9x2 + 11x − 1

(b)

−1 0 1 2

−16

16

x

y
y = (x − 2)4(x + 1)3(x − 1)

(c)

−2−4 2 4

−4

−2

2

4

FIGURE 1.18 Graphs of three polynomial functions.

(a) (b) (c)

2 4−4 −2

−2

2

4

−4

x

y

y = 2x2 − 3
7x + 4

0
−2

−4

−6

−8

2−2−4 4 6

2

4

6

8

x

y

y = 11x + 2
2x3 − 1

−5 0

1

2

−1

5 10

−2

x

y

Line y = 5
3

y = 5x2 + 8x − 3
3x2 + 2

NOT TO SCALE

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called 
asymptotes and are not part of the graphs. We discuss asymptotes in Section 2.6.

Rational Functions A rational function is a quotient or ratio ƒ(x) = p(x)>q(x), where 
p and q are polynomials. The domain of a rational function is the set of all real x for which 
q(x) ≠ 0. The graphs of several rational functions are shown in Figure 1.19.
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10 Chapter 1: Functions

Trigonometric Functions The six basic trigonometric functions are reviewed in Section 1.3. 
The graphs of the sine and cosine functions are shown in Figure 1.21.

Exponential Functions Functions of the form ƒ(x) = ax, where the base a 7 0 is a 
positive constant and a ≠ 1, are called exponential functions. All exponential functions 
have domain (-q, q) and range (0, q), so an exponential function never assumes the 
value 0. We discuss exponential functions in Section 1.5. The graphs of some exponential 
functions are shown in Figure 1.22.

Algebraic Functions Any function constructed from polynomials using algebraic oper-
ations (addition, subtraction, multiplication, division, and taking roots) lies within the 
class of algebraic functions. All rational functions are algebraic, but also included are 
more complicated functions (such as those satisfying an equation like y3 - 9xy + x3 = 0, 
studied in Section 3.7). Figure 1.20 displays the graphs of three algebraic functions.

(a)

4−1

−3

−2

−1

1

2

3

4

x

y y = x1�3(x − 4)

(b)

0

y

x

y = (x2 − 1)2�33
4

(c)

11−1 0

−1

1

x

y

5
7

y = x(1 − x)2�5

FIGURE 1.20 Graphs of three algebraic functions.

y

x

1

−1
p 2p

3p

(a)  f (x) = sin x

0

y

x

1

−1
p

2

3
2 2

(b)  f (x) = cos x

0

p

2
− p

−p

5p

FIGURE 1.21 Graphs of the sine and cosine functions.

(a) (b)

y = 2–x

y = 3–x

y = 10–x

−0.5−1 0 0.5 1

2

4

6

8

10

12

y

x

y = 2x

y = 3x

y = 10x

−0.5−1 0 0.5 1

2

4

6

8

10

12

y

x

FIGURE 1.22 Graphs of exponential functions.
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 1.1  Functions and Their Graphs 11

Logarithmic Functions These are the functions ƒ(x) = loga x, where the base a ≠ 1 
is a positive constant. They are the inverse functions of the exponential functions, and 
we discuss these functions in Section 1.6. Figure 1.23 shows the graphs of four loga-
rithmic functions with various bases. In each case the domain is (0, q) and the range  
is (-q, q).

−1 10

1

x

y

FIGURE 1.24 Graph of a catenary or 
hanging cable. (The Latin word catena 
means “chain.”)

1

−1

1

0
x

y

y = log3x

y = log10 x

y = log2 x

y = log5x

FIGURE 1.23 Graphs of four logarithmic 
functions.

Transcendental Functions These are functions that are not algebraic. They include the 
trigonometric, inverse trigonometric, exponential, and logarithmic functions, and many 
other functions as well. A particular example of a transcendental function is a catenary. 
Its graph has the shape of a cable, like a telephone line or electric cable, strung from one 
support to another and hanging freely under its own weight (Figure 1.24). The function 
defining the graph is discussed in Section 7.3.

Functions
In Exercises 1–6, find the domain and range of each function.

 1. ƒ(x) = 1 + x2 2. ƒ(x) = 1 - 2x

 3. F(x) = 25x + 10 4. g(x) = 2x2 - 3x

 5. ƒ(t) = 4
3 - t

 6. G(t) = 2
t2 - 16

In Exercises 7 and 8, which of the graphs are graphs of functions of x, 
and which are not? Give reasons for your answers.

 7.  a. 

x

y

0

  b. 

x

y

0

 

 8.  a. 

x

y

0

  b. 

x

y

0

 

Finding Formulas for Functions
 9. Express the area and perimeter of an equilateral triangle as a 

function of the triangle’s side length x.

 10. Express the side length of a square as a function of the length d of 
the square’s diagonal. Then express the area as a function of the 
diagonal length.

 11. Express the edge length of a cube as a function of the cube’s 
diagonal length d. Then express the surface area and volume of 
the cube as a function of the diagonal length.

Exercises 1.1
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12 Chapter 1: Functions

 31.  a. 

x

y

3

1
(−1, 1) (1, 1)

   b. 

x

y

1

2

(−2, −1) (3, −1)(1, −1)

 

 32.  a. 

x

y

0

1

TT
2

(T, 1)

   b. 

t

y

0

A

T

−A

T
2

3T
2

2T

The Greatest and Least Integer Functions
 33. For what values of x is

a. :x; = 0? b. <x= = 0?

 34. What real numbers x satisfy the equation :x; = <x=?

 35. Does <-x= = -:x;  for all real x? Give reasons for your answer.

 36. Graph the function

ƒ(x) = e :x;, x Ú 0
<x= , x 6 0.

  Why is ƒ(x) called the integer part of x?

Increasing and Decreasing Functions
Graph the functions in Exercises 37–46. What symmetries, if any, do 
the graphs have? Specify the intervals over which the function is 
increasing and the intervals where it is decreasing.

 37. y = -x3 38. y = -  
1
x2

 39. y = -  
1
x  40. y = 1

0 x 0
 41. y = 2 0 x 0  42. y = 2-x

 43. y = x3>8 44. y = -42x

 45. y = -x3>2 46. y = (-x)2>3

Even and Odd Functions
In Exercises 47–58, say whether the function is even, odd, or neither. 
Give reasons for your answer.

 47. ƒ(x) = 3 48. ƒ(x) = x-5

 49. ƒ(x) = x2 + 1 50. ƒ(x) = x2 + x

 51. g(x) = x3 + x 52. g(x) = x4 + 3x2 - 1

 53. g(x) = 1
x2 - 1

 54. g(x) = x
x2 - 1

 55. h(t) = 1
t - 1

 56. h(t) = � t3 �

 57. h(t) = 2t + 1 58. h(t) = 2 � t � + 1

Theory and Examples
 59. The variable s is proportional to t, and s = 25 when t = 75. 

Determine t when s = 60.

 12. A point P in the first quadrant lies on the graph of the function 
ƒ(x) = 2x. Express the coordinates of P as functions of the 
slope of the line joining P to the origin.

 13. Consider the point (x, y) lying on the graph of the line 
2x + 4y = 5. Let L be the distance from the point (x, y) to the 
origin (0, 0). Write L as a function of x.

 14. Consider the point (x, y) lying on the graph of y = 2x - 3. Let 
L be the distance between the points (x, y) and (4, 0). Write L as a 
function of y.

Functions and Graphs
Find the natural domain and graph the functions in Exercises 15–20.

 15. ƒ(x) = 5 - 2x 16. ƒ(x) = 1 - 2x - x2

 17. g(x) = 2 0 x 0  18. g(x) = 2-x

 19. F(t) = t> 0 t 0  20. G(t) = 1> 0 t 0
 21. Find the domain of y = x + 3

4 - 2x2 - 9
 .

 22. Find the range of y = 2 + x2

x2 + 4
 .

 23. Graph the following equations and explain why they are not 
graphs of functions of x.

  a. 0 y 0 = x b. y2 = x2

 24. Graph the following equations and explain why they are not 
graphs of functions of x.

  a. 0 x 0 + 0 y 0 = 1 b. 0 x + y 0 = 1

Piecewise-Defined Functions
Graph the functions in Exercises 25–28.

 25. ƒ(x) = e x, 0 … x … 1

2 - x, 1 6 x … 2

 26. g(x) = e1 - x, 0 … x … 1

2 - x, 1 6 x … 2

 27. F(x) = e4 - x2, x … 1

x2 + 2x, x 7 1

 28. G(x) = e1>x, x 6 0

x, 0 … x

Find a formula for each function graphed in Exercises 29–32.

 29.  a. 

x

y

0

1

2

(1, 1)

  b. 

t

y

0

2

41 2 3

 

 30.  a. 

x

y

52

2
(2, 1)

   b. 

−1
x

y

3

21

2

1

−2

−3

−1
(2, −1)
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 1.1  Functions and Their Graphs 13

 60. Kinetic energy The kinetic energy K of a mass is proportional 
to the square of its velocity y. If K = 12,960 joules when 
y = 18 m>sec, what is K when y = 10 m>sec?

 61. The variables r and s are inversely proportional, and r = 6 when 
s = 4. Determine s when r = 10.

 62. Boyle’s Law Boyle’s Law says that the volume V of a gas at 
constant temperature increases whenever the pressure P decreases, 
so that V and P are inversely proportional. If P = 14.7 lb>in2 
when V = 1000 in3, then what is V when P = 23.4 lb>in2?

 63. A box with an open top is to be constructed from a rectangular 
piece of cardboard with dimensions 14 in. by 22 in. by cutting out 
equal squares of side x at each corner and then folding up the 
sides as in the figure. Express the volume V of the box as a func-
tion of x.

x

x

x

x

x

x

x

x

22

14

 64. The accompanying figure shows a rectangle inscribed in an isos-
celes right triangle whose hypotenuse is 2 units long.

 a. Express the y-coordinate of P in terms of x. (You might start 
by writing an equation for the line AB.)

 b. Express the area of the rectangle in terms of x.

x

y

−1 0 1x
A

B

P(x, ?)

In Exercises 65 and 66, match each equation with its graph. Do not 
use a graphing device, and give reasons for your answer.

 65.  a. y = x4 b. y = x7 c. y = x10

x

y

f

g

h

0

 66.  a. y = 5x b. y = 5x c. y = x5

x

y

f

h

g

0

 67.  a.  Graph the functions ƒ(x) = x>2 and g(x) = 1 + (4>x) to - 
gether to identify the values of x for which

x
2

7 1 + 4
x .

 b. Confirm your findings in part (a) algebraically.

 68.  a.  Graph the functions ƒ(x) = 3>(x - 1) and g(x) = 2>(x + 1) 
together to identify the values of x for which

3
x - 1

6 2
x + 1

.

 b. Confirm your findings in part (a) algebraically.

 69. For a curve to be symmetric about the x-axis, the point (x, y) must 
lie on the curve if and only if the point (x, -y) lies on the curve. 
Explain why a curve that is symmetric about the x-axis is not the 
graph of a function, unless the function is y = 0.

 70. Three hundred books sell for $40 each, resulting in a revenue of 
(300)($40) = $12,000. For each $5 increase in the price, 25 
fewer books are sold. Write the revenue R as a function of the 
number x of $5 increases.

 71. A pen in the shape of an isosceles right triangle with legs of 
length x ft and hypotenuse of length h ft is to be built. If fencing 
costs $5/ft for the legs and $10/ft for the hypotenuse, write the 
total cost C of construction as a function of h.

 72. Industrial costs A power plant sits next to a river where the 
river is 800 ft wide. To lay a new cable from the plant to a loca-
tion in the city 2 mi downstream on the opposite side costs $180 
per foot across the river and $100 per foot along the land.

x QP

Power plant

City

800 ft

2 mi

NOT TO SCALE

a. Suppose that the cable goes from the plant to a point Q on the 
opposite side that is x ft from the point P directly opposite the 
plant. Write a function C(x) that gives the cost of laying the 
cable in terms of the distance x.

b. Generate a table of values to determine if the least expensive 
location for point Q is less than 2000 ft or greater than 2000 ft 
from point P.

T

T
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14 Chapter 1: Functions

1.2 Combining Functions; Shifting and Scaling Graphs

In this section we look at the main ways functions are combined or transformed to form 
new functions.

Sums, Differences, Products, and Quotients

Like numbers, functions can be added, subtracted, multiplied, and divided (except where 
the denominator is zero) to produce new functions. If ƒ and g are functions, then for every 
x that belongs to the domains of both ƒ and g (that is, for x∊D(ƒ) ¨ D(g)), we define 
functions ƒ + g, ƒ - g, and ƒg by the formulas

 (ƒ + g)(x) = ƒ(x) + g(x)

 (ƒ - g)(x) = ƒ(x) - g(x)

 (ƒg)(x) = ƒ(x)g(x).

Notice that the +  sign on the left-hand side of the first equation represents the operation of 
addition of functions, whereas the +  on the right-hand side of the equation means addition 
of the real numbers ƒ(x) and g(x).

At any point of D(ƒ) ¨ D(g) at which g(x) ≠ 0, we can also define the function ƒ>g 
by the formula

aƒ
gb (x) =

ƒ(x)
g(x)
  (where g(x) ≠ 0).

Functions can also be multiplied by constants: If c is a real number, then the function 
cƒ is defined for all x in the domain of ƒ by

(cƒ)(x) = cƒ(x).

EXAMPLE 1  The functions defined by the formulas

ƒ(x) = 2x  and  g(x) = 21 - x

have domains D(ƒ) = 30, q) and D(g) = (-q, 14 . The points common to these 
domains are the points

30, q) ¨ (-q, 14 = 30, 14 .

The following table summarizes the formulas and domains for the various algebraic com-
binations of the two functions. We also write ƒ # g for the product function ƒg.

 Function Formula Domain

 ƒ + g (ƒ + g)(x) = 2x + 21 - x 30, 14 = D(ƒ) ¨ D(g)

 ƒ - g (ƒ - g)(x) = 2x - 21 - x 30, 14
 g - ƒ (g - ƒ)(x) = 21 - x - 2x 30, 14
 ƒ # g (ƒ # g)(x) = ƒ(x)g(x) = 2x(1 - x) 30, 14

 ƒ>g 
ƒ
g (x) =

ƒ(x)
g(x)

= A x
1 - x

 30, 1) (x = 1 excluded)

 g>ƒ 
g
ƒ (x) =

g(x)
ƒ(x)

= A1 - x
x  (0, 14  (x = 0 excluded)

 

The graph of the function ƒ + g is obtained from the graphs of ƒ and g by adding the 
corresponding y-coordinates ƒ(x) and g(x) at each point x∊D(ƒ) ¨ D(g), as in Figure 1.25. 
The graphs of ƒ + g and ƒ # g from Example 1 are shown in Figure 1.26.

M01_THOM4077_CH01_pp001-058.indd   14 6/12/13   5:44 PM



 1.2  Combining Functions; Shifting and Scaling Graphs 15

y = ( f + g)(x)

y = g(x)

y = f (x) f (a)
g(a)

f (a) + g(a)

a

2

0

4

6

8

y

x

FIGURE 1.25 Graphical addition of two 
functions.

5
1

5
2

5
3

5
4 10

1

x

y

2
1

g(x) = "1 − x f (x) = "x
y = f + g

y = f • g

FIGURE 1.26 The domain of the function ƒ + g 
is the intersection of the domains of ƒ and g, the 
interval 30, 14  on the x-axis where these domains 
overlap. This interval is also the domain of the  
function ƒ # g (Example 1).

Composite Functions

Composition is another method for combining functions.

The definition implies that ƒ ∘ g can be formed when the range of g lies in the domain 
of ƒ. To find (ƒ ∘ g)(x), first find g(x) and second find ƒ(g(x)). Figure 1.27 pictures ƒ ∘ g as 
a machine diagram, and Figure 1.28 shows the composite as an arrow diagram.

x g f f (g(x))g(x)

FIGURE 1.27 A composite function ƒ ∘ g uses 
the output g(x) of the first function g as the input 
for the second function ƒ.

x

f (g(x))

g(x)

g
f

f ∘ g

FIGURE 1.28 Arrow diagram for ƒ ∘ g. If x lies in the 
domain of g and g(x) lies in the domain of ƒ, then the 
functions ƒ and g can be composed to form (ƒ ∘ g)(x).

To evaluate the composite function g ∘ ƒ (when defined), we find ƒ(x) first and then 
g(ƒ(x)). The domain of g ∘ ƒ is the set of numbers x in the domain of ƒ such that ƒ(x) lies 
in the domain of g.

The functions ƒ ∘ g and g ∘ ƒ are usually quite different.

DEFINITION If ƒ and g are functions, the composite function ƒ ∘ g (“ƒ com-
posed with g”) is defined by

(ƒ ∘ g)(x) = ƒ(g(x)).

The domain of ƒ ∘ g consists of the numbers x in the domain of g for which g(x) 
lies in the domain of ƒ.
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